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Abstract. This paper concerns the similar y incommensurate phases found in bis (n-pro- 
pylammonium) tetrachloro-manganate and -cuprate. The modulation is driven by the propyl 
chains. A simple physical picture explains the microscopic origin of these modulated struc- 
tures in terms of interatomic interactions. The ends of the propyl chains from successive 
layers interpenetrate at the ‘peaks’ of the modulation, while at the ‘troughs’ of the wave the 
adjacent chains from the same layer are brought closer together. Both effects serve to lower 
the Van der Waals energy between chains. Some theory and some computer simulation 
round off the picture and give quantitative support. 

1. Introduction and qualitative physical picture 

The purpose of this paper is to give a microscopic explanation for the occurrence of the 
y phase in the (C3HjNH,)2CuCl, and (C3HjNH3)2MnC14 compounds. It is the easiest 
modulated structure to understand in simple qualitative terms, at least among those 
known to us. The structure is characterised by a succession of inorganic layers of corner- 
sharing Cu(Mn)C16 octahedra. The ammonium ends of the organic chains are connected 
by hydrogen bonds to the C1 atoms. The chains stand approximately perpendicular to 
the layers on both sides (figure 1). The structure is modulated in the manner shown in 
figure 1. The y phase of the Mn compound was determined qualitatively (Depmeier 
1981, Muralt et a1 1986). The structural investigation of the Cu compound (Doudin 
and Chapuis 1990b) leads to the same characteristics, summarised in figure 1. Both 
compounds exhibit a wave vector qIc = &U*, a being approximately equal to 0.18. 
However, the Jahn-Teller deformation affecting the coordination of the Cu atom 
induces a decrease of the symmetry with respect to the Mn specimen. This change in the 
inorganic part of the structure does not affect the stacking of the organic chains, which 
is similar in the two compounds. The lateral spacing, ao, of the chains is also important 
and is determined (for short chains) by the inorganic ‘backbone’ layer formed from 
metal chloride octahedra. 

Muralt has already given a suggestive qualitative physical picture of what causes the 
transition (Muralt 1986, Kind and Muralt 1986). The main point is that the adjacent 
chains within one layer are much further apart (due to the backbone) than under 
optimum close packing of such chains; but the spacing is not double the optimum, i.e. 
not enough for chains from successive layers to interpenetrate. This situation is rather 
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Figure 1. Propyl chains from successive layers 1 and 2, the small circle being their methyl 
end group At  the ‘troughs’ Tof  the modulation of the lower layer, the chains fromsuccessive 
layers draw apart, but adjacent chains from the Same layer come close together. At  the 
‘peaks’ P the adjacent chains on the same layer are splayed open and allow greater Inter- 
penetration by the chains from the next layer. The lines at 1 and 2 denote the metal chloride 
backbone of the layers. 

unsatisfactory from the point of view of the Van der Waals (VdW) interaction energy of 
the chains. There are two ways of lowering the VdW energy, and the modulated phase 
achieves both: if we open up the spacing between adjacent chains, we can get more 
interpenetration and hence lower the energy; similarly, if we close up the spacing 
between adjacent chains, that also lowers their VdW energy. Figure 1 shows that the first 
type occurs in the regions P of the modulation and the second type in the region T. 

We can make this picture more convincing by using a computer simulation (section 
3 and 4). Instead of varying the aperture angle of the adjacent chains, we vary the 
separation a between adjacent chains in a static model ( T  = 0). We also vary the spacing 
c between successive layers. The energy E(a, c) per chain is shown in figure 2, where a 
and c represent the local situation. We see that the energy at the mean spacing (an, co) 
corresponds to a saddle point, with two minima close by. The minimum at P has larger 
a and smaller c spacing, as at P in figure 1; the minimum at T corresponds to the local 
situation at T in figure 1. Clearly, the modulation makes use of these two minima to 
lower the energy. We can use the energy from figure 2 to develop a quantitative theory 
of the modulation in section 2. The energy is expanded in power series and the various 
terms determine the instability leading to a modulated phase, the magnitude of the wave 
vector, etc. Of course, the theory is only static and hence cannot do justice to the 
phase transitions to the two adjacent /3 and 6 phases at higher and lower temperatures 
respectively. We will give a qualitative discussion in section 4 of what we believe causes 
these transitions. Note that phase 6 is a re-entrant phase of the same symmetry as /3. 

2. Theory of the modulation 

For a modulation wave running along x, we can estimate the local variables c(x) and a(x) 
expressing the distance separating successive inorganic planes and the separation along 
x between the methyl ends of two adjacent chains respectively, shown in figure 1, 

c(x) = co + 2A cos(2nqx) 

a(x) = a. - 4 A ~ ~ q ~ l o a o  cos(2nqx) 
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Figure 2. Energy contours from the simulation, showing the local energy E(a,  c), The heavy 
dot is at an ,  cn, which are the mean values of the separation between adjacent chains and the 
vertical separation between successive layers respectively. The low energies at P and T 
correspond to the situations also labelled P and T in figure 1. The slope of the bold line 
indicates the ratio of the a and c modulation amplitudes. In producing this plot,,we have 
removed the effect of the first derivative (aE/aa),,, at an  = 6.0 8, which is balanced by the 
rigidity of the backbone. 

where A is the displacement amplitude of the backbone in thez direction, lo is the length 
of the organic chains and q is the modulation wave vector component. The factor 2 in 
(2.1) comes from the antiphase motion of successive layers. The modulation amplitude 
in (2.2) is a simple consequence of tilting the propyl chains, keeping them perpendicular 
to the backbone, in the approximation quo 

We now evaluate the energy Wo(ao, co; A ,  q) of the modulated structure centred on 
the average spacings ao, co. Let E ( a ,  c) be the local energy per propyl chain for given 
local separations a and c. Then 

1.. 

where L is large compared with ao, and a and c vary withx according to (2.1) and (2.2). 
We expand E(a, c) as a Taylor series about ao, co: 

E(a,  c )  = q u o ,  CO) + a,(a - ao) + idaa(a - UO)* 

+ a,,(a - ao)(c - c0) +  ha,,(^ - c0)* + . . . . (2 * 4) 

Here a,, a,,, a,,. are first and second derivatives of E with respect to a and c ,  evaluated 
at (ao, co). There is no a, term in (2.4) because d, = 0 by the equilibrium condition with 
respect to the c-spacing. However, there is a non-zero term in d, which is cancelled by 
an equal and opposite stress in the backbone, not so far included in E or WO. From (2.1) 
to (2.4) we obtain 

WO = E ( a o ,  co) + (a,, - duce2 + &3,,Q4)A2 + O(A4). (2.5) 
Here Q2 is a dimensionless form of the wave vector component q:  
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Q 2  = 4n2q210ao. 

The value of Q2 also expresses the ratio in (2.1), (2.2): 

amplitude of a ( x )  modulation 
tQ2 = amplitude of c(x) modulation ' 

For a modulated phase to be stable, the coefficient of A 2  in (2.5) must be negative. It is 
clearly being driven negative by -d,,Q2 and a necessary condition is 

doc  > 0. (2.8) 

Q', = 2d,,/d,, . (2.9) 

A = d c c d a a  - 0 (2.10) 

Minimising the coefficient of A2 with respect to Q gives the value Q, at the minimum 

If we substitute (2.9) into (2.5), we obtain 

as the condition for the coefficient of A2 to be negative. This condition, stronger than 
(2.8), is necessary and sufficient for a modulated phase to exist. Actually, this algebra is 
not quite appropriate because we need a global minimum with respect to A and Q. The 
condition (2.10) is the condition for the energyto have a saddle point at (ao, co), and the 
ratio (2.7) is optimised by choosing the direction of steepest descent from the saddle, 
given by 

2 _ -  (2.11) 

instead of (2.9). 
We now have to include the contribution W, to the energy from the inorganic 

backbone. This has two effects. Firstly, it cancels any linear term from d Wo/dao in the 
total energy 

w= WO + w, (2.12) 

as already explained. Secondly, it adds an energy 

W i  = aCQ4A2 (2.13) 

as the elastic energy of buckling the backbone, with C > 0 (Landau and Lifshitz 1959). 
Adding (2.13) to (2.5) simply replaces daa by a,, + C. The same replacement should be 
made in the inequality (2.10): if Cis too large, it will clearly destroy the saddle point and 
give a minimum at A = 0. Similarly, from (2.9) or (2.11), the same substitution shows 
that W, decreases the value of Qk. 

3. The computer simulation 

We want to calculate the VDW energy of the interacting propyl chains. Modelling the 
interaction of organic molecules is a highly developed art and we simply follow the 
practitioners (Williams and Cox 1984, Price 1986, and references cited therein). Since 
we treat the organic chains as rigid, on!y the non-bonding interchain energy is calculated, 
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Table 1. Potential parameters used for the calculations (taken from Williams and Cox 1984). 
The notation corresponds to equation (3.1). 

Acc = 2439.8 kJ mol-’ A6 Bcc = 369743 kJ mol-’ Ccc = 3.60 A 
A,, = 136.4 kJ mol-’ A6 BHH = 11971 kJ mol-] CHH = 3.74 A 

= (ACCAHH)’i2 B c H  = (BcCBHH)”’  C C H  = i ( C C C  + C H H )  & 0 ., 0 

Figure3. A pair of adjacent chains is represented. 
The case (a) corresponds to a tilting angle given 
by the bending of the backbone (bold line). The 
simplification used in our calculations corre- 
sponds to the case ( b )  taking into consideration 
only the interaction involving the methyl ends and 
a part of the next -CH,- group of the chains. 

~_.______________~ __..._____.______ 

Qa 0 0  

( b )  (Q I 

the interaction between atoms being given by an empirical energy expression of the form 
(Kitaigorodsky 1973): 

Elk  = Blk exp(-C,krjk) - A i k r G 6  + qiqkrG’* (3.1) 

Here rlk is the distance separating the two atoms. The exponential term is a short range 
strong repulsive energy. the r-6 term corresponds to a VDW energy, and the last term 
represents the Coulombic interaction. The parameters A ,  B ,  C and q ,  concerning the 
carbon and hydrogen atoms have been determined by fitting a large number of azahydro- 
carbons and saturated hydrocarbons structures. They are summarised in table 1. The 
Coulombic contribution to the energy is less than one per cent and was neglected 
(Williams and Cox 1984). The calculations were performed with the help of the program 
WMIN (Busing 1981). 

We want to compute the energy E(a,  c) where a is the separation of the tips of the 
propylammonium chains caused by tilting them as in figure 1. A complete simulation of 
this would be difficult. We therefore suppose that the tilting brings the top methyl group 
and, say, half the next -CH2-groups closer together to a distance a ,  the rest of the chain 
remaining unchanged. That is, we replace the real geometry of figure 3(a) by that of 
figure 3(b). 

The model system for our calculation is therefore that shown in figure 4 consisting of 
parallel propane molecules with variable spacing a ,  the three-dimensional arrangement 
corresponding to that of the real crystal. While the absolute magnitude of our calculated 
energy will certainly be in error by a factor of order unity, we trust the variation of E(a,  
c) with a and c will be given satisfactorily. The propane chains have an internal symmetry 
mm2 for the optimal internal energy configuration (figure 4). The C-C bond length 
value of 1.53 8, and the C-H bond length of 1.02 8, were given. The computer model 
has four propane molecules per orthorhombic unit cell (figure 4). The four molecules 
were initially given at positions related by glide plane symmetry and b-face centring 
(figure 4), but were then completely relaxed by independent rotations and translations 
(only the rotation around the x axis was fixed at a zero value, in order to respect the 
geometry imposed by the backbone). It turned out that these needed to be non-zero to 
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Figure 4. A plot showing a projection alongy of 
the structure used for the calculations. Only the 
molecules around the plane ( y  = 0) are shown. 
Two other molecules are generated by a glide 
plane perpendicular to x, with a translation of Ib 
(vertical dotted line in the figure). The shaded 
region corresponds to the interacting ends of the 
propylammonium chains. The c is analogous to 
the co of figure 1, but the dimension of the model- 
ling cell is 2c. 

obtain an improved interpenetration of the molecules, but the effect was to shift E(a,  c) 
by an amount that was almost a constant, independent of a and c. The only parameter 
significantly different from zero corresponds to a translation of all molecules around y = 
2 in thex direction, with a value reaching 1.0 8, when a is large (>7.0 A), and decreasing 
to 0.4 A for smaller values of a (<5.5 A). The b dimension of the modelling cell was also 
an apriori choice. As the high symmetry phase occurring at high temperature (phase (U) 

showed equal values for a and b ,  we imposed a value of 7.0  A for b (the experiments 
showed values around 7.5 A) corresponding to the critical values found for a in our 
calculations. For all the conclusions deduced from our calculations, we checked that the 
variations induced by a change in the value of b can be neglected. 

4. Results and discussion 

As a first step, we calculated the interaction energy of a single layer by setting c to a very 
large value in the simulation. The result (figure 5 )  confirms that our value of a, (about 
7.0 A),setbythebackbone,ismuchlargerthanthat(about4.5 A)forclosepackingofthe 
molecules, but clearly not twice as large as would be needed for large interpenetration. 

The next step was to calculate E(a,  c) for many values of a and c. With a fixed value 
of 0.6 A for the shift in the x direction characterising the molecules around y = 4, we 
calculated a grid of 20 x 20 values. In order to discuss the expansion (2.4), an approxi- 
mate representation by a series of Chebyshev polynomials was used. A determination 
of the second derivatives, with a reliability of a few per cent on changing the grid or the 
degree of the polynomials, was possible. All these calculations were performed with the 
help of the mathematical 1ibraryNagFortran. Figure 6shows the resultsof the calculation 
of A ,  expressed using the inequality (2.10). We found negative values over a large region 
of the parameter space. However, A is positive if the value of a corresponds to the 
observations (around 7.4 A). We must not be surprised by this result, the structure being 
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Figure 5. The energy function of the separation between adjacent chains, of a planar packing 
of propane chains. 
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Figure 6. A map showing the calculated values of the second-derivative test A concerning 
the local energy. The contour lines are limited to values between -30 and 0. The area 
where A < -30 or A > 0 are specified without contour lines. If a. is greater than 6.9 A, a 
commensurate configuration is preferred. 

commensurate at lower temperatures (phase 6). The local energy showed an absolute 
minimum at a = 7.96 A, with an energy equal to -27.4 kJ mol-' of propane chains. 

Our static model cannot reproduce a phase at T > 0, except in an approximation 
where the thermal agitation and the entropy will induce a larger effective diameter of 
the molecule. This effect can be reproduced, not by expanding the molecule, but by 
choosing an artificially reduced effective value for ao. Figure 2 was produced with a value 
of a. = 6.0 A (E(ao ,  co) = -10.9 kJ mol-'). The choice of a. also determines the linear 
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Table 2. Comparisons between the cell parameter a and the parameter A 2  as regards the 
phase 6 of the Cd, Cu and Mn compounds and the configuration P observed in the local 
energy. The second part compares the values observed for the p phase of the Cu compound 
and the configuration T of the local energy. 

Compound Cdt  Mn$ CuO Thiswork 

Phase 6 ,  temperature (K) 295 295 360 Configuration P 
a (4 7.64 7.46 7.65 7.7 
AZ (4 0.97 1.11 1.02 1.15 

Phase b, temperature (K) 
a (4 
A.z (A) 

433 Configuration T 
7.53 4.65 
2.03 3.3 

t Doudin and Chapuis (1988). 
$ Peterson and Willett (1972). 
0 Doudin and Chapuis (1990a). 

term, expressing the equilibrium condition with the stiffness of the backbone, which 
cancels the first derivative of E with respect to a (section 2). The effective local energy 
will be given by 

&(a, c> = E(a,  c) - (0 - a,)d,. (4.1) 
To avoid the use of another symbol in the following discussion, we will consider the local 
energy given by Eeff. 

The use of an effective lower value for a. is also supported by the experimental 
observations. A minimum of the local energy is reached when the value of a. is less than 
approximately 5.0 A, which we take to model a higher temperature still. The large value 
of c, obtained in the simulation for this ao, corresponds to the separation observed in 
the p phase of the Cu compound. The phase 6 ,  the fundamental state in our model, also 
corresponds to an absolute minimum found for the local energy when a. is greater than 
7.0 A. Table 2 shows how the experimental values for a and c are analsgous to those 
deduced from the minima P and T of the local energy. The comparison of the inter- 
penetration was done using the quantity AZ, defined as the distance along z separating 
the carbon atoms of the methyl end of the chains. The same quantity was used to exhibit 
the structural difference between /3 and 6 phases in the Cu compound (Doudin and 
Chapuis 1990a). 

We now return to the modulated phase y .  The value of Q2 will be given by the 
direction of the steepest downward slope of figure 2 (indicated by the bold line), 
corresponding to equation (2.11). From figure 2, we deduce 

Q;,, =I 2.2. (4.2) 
Including the stiffness, C, of the backbone in (2.9) and (2.11) will reduce the value of 
Q2 from (4.2) as discused below (2.13). Alternatively, the value of Q2 can be related to 
the observed wave vector of the modulation, leading to 

where lo is the length of the organic chain and has a value around 8.414 for the n- 
propylammonium. Its effective value can differ slightly: remember that the value Q’, is 
deduced from a model involving a rigid connection of the chains with the backbone and 

Q’, = 1.27 l o / a o  (4.3) 
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Figure 7. The variation of the energy with the modulation amplitude of the a-displacement. 
The full curve is the numerical estimation of W O ,  based on the local energy (centred at a. = 

6.0 A). The broken curve is obtained on adding to W,, the elastic energy W,,  proportional to 
A 2 ,  corresponding to the equation (2.13). Taking, for example, a value of 2.5 for C, the 
figure shows how the amplitude minimising the energy is decreased. 

neglecting the phase difference separating the displacement of two successive organic 
chains (it corresponds to the hypothesis of quo 1 in the deduction of (2.2)). In view of 
these approximations and the reduction of (4.2) due to C, we regard the agreement 
between (4.2) and (4.3) as satisfactory. 

Figure 2 will also give a direct estimation of the modulation amplitude. The existence 
of the two minima in the energy map results in a finite value for A,,,, and is beyond our 
energy expansion (2.5). The value of A must be large enough to reach the minima in P 
and T in figure 2. Figure 7 gives an estimate of the variation of the energy with A ,  from 
which we would expect an amplitude A of 1.5 A.  This will also be reduced severely by 
the effect of C (section 2) since the energy W, (2.13) is proportional to A 2  (figure 7). It 
explains why the experimental values for the amplitudes along a and c (a few tenths of 
A) are much lower than those deduced from the local energy involving only the organic 
interactions (more than 1 A). 

So far so good, but we start to run into problems if we try to fit a single value of C to 
account for all the mentioned effects on A and (2. On the one hand C needs to be large 
enough to reduce (4.2) sufficiently to (4.3). On the other hand, the value of Cis  limited 
by the condition 

C <  -Ala,,  (4.4) 

deduced from (2.10), if we want a saddle point in (ao ,  co). 
So this is the place to stop. The purpose of computational physics is to increase 

understanding. There are a number of details beyond what can be properly accounted 
for by our static model. No doubt one could tune the interatomic forces in a dynamic 
calculation until the computer model becomes identical to experiment: but that is not 
our objective. Our purpose here has been to demonstrate beyond reasonable doubt that 
the interaction between the chains can drive an incommensurate instability and to show 
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how this comes about. What was a nice qualitative suggestion for the origin of the 
y phase (Muralt 1986) has been refined and lifted to a convincing semiquantative 
explanation. 
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